
Installation

What TreeView Xtra Does

Getting Started

Methods at a Glance

Methods Documentation

Callback Handlers

Event Handling

Error Code List

Color

JavaScript

Shockwave

Limitations

How to Order & Register

Licensing & Availability

Technical Support

For up-to-date information please visit our web
site:
xtras.tabuleiro.com

Online Help

1

http://xtras.tabuleiro.com

TREEVIEW XTRA HELP: INSTALLATION

The installation procedure is slightly different depending on the version of Director
and platform used. Make sure you have administrative rights to create files in the
directory where Director is installed on your system.

WINDOWS MACINTOSH

Director 11 Director 11

Director
MX 2004

Director MX
2004

Director
MX Director MX

Director 8.5 Director 8.5

Online Help

2

TREEVIEW XTRA HELP: INSTALLATION: WINDOWS - DIRECTOR 11

INSTALLING THE XTRA ON WINDOWS - Director 11

Decompress the installation .zip file. This will unpack the Xtra, documentation and
sample files to a folder named "TreeView" on your machine. To install the Xtra,
just copy the file Windows\TreeView.x32 to the Director 11 XTRAS folder. If your
copy of Director 11 is installed at the default location, the Windows Xtra file will
be located at:

C:\Program Files\Adobe\Adobe Director 11\Configuration\Xtras\TreeView.x32

Now you need to install the files necessary for creation of cross-platform projector
for Mac OSX. Go back to the "TreeView" directory where the Xtra files were
unpacked. Open the Mac Universal directory. Now copy the file "TreeView.cpio"
to the "Configuration\Cross Platform Resources\Macintosh\Xtras" directory used
by Director 11. In a default installation of Director this file will end up at the
following location:

C:\Program Files\Adobe\Adobe Director 11\Configuration\Cross Platform
Resources\Macintosh\Xtras\TreeView.cpio

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave and cross-platform
publishing features in Director 11, to locate the files needed when assembling the
Mac OSX version of your projector. The xtrainfo.txt file is located by default at:

C:\Program Files\Adobe\Adobe Director 11\Configuration\xtrainfo.txt

Double click the file to open it in notepad, or alternatively edit with any other text
editor. You need to add the following line to the end of the file:

Online Help

3

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The
Xtra should be listed when you issue the command "put the xtralist" in the message
window. The Xtra functions will also be listed when you click the message window
Scripting Xtras button.

Online Help

4

TREEVIEW XTRA HELP: INSTALLATION: WINDOWS - DIRECTOR MX
2004

INSTALLING THE XTRA ON WINDOWS - Director MX 2004

If you have not done so, we recommend updating to Director MX 2004 version
10.1 before installing the Xtra. This will allow creation of projectors for Mac
Classic and OSX (Director MX 2004 without the update can only create cross
platform projectors for OSX.)

Decompress the installation .zip file. This will unpack the Xtra, documentation and
sample files to a folder named "TreeView" on your machine. To install the Xtra,
just copy the file Windows\TreeView.x32 to the Director MX 2004 XTRAS folder.
If your copy of Director MX 2004 is installed at the default location, the Windows
Xtra file will be located at:

C:\Program Files\Macromedia\Director MX
2004\Configuration\Xtras\TreeView.x32

Now you need to install the files necessary for creation of cross-platform projector
for Mac OSX. Go back to the "TreeView" directory where the Xtra files were
unpacked. Open the Mac Carbon directory. Now copy the files "TreeView.data"
and "TreeView.rsrc" files to the "Configuration\Cross Platform
Resources\Macintosh\Xtras" directory used by Director MX 2004. In a default
installation of Director these files will end up at the following locations:

C:\Program Files\Macromedia\Director MX 2004\Configuration\Cross Platform
Resources\Macintosh\Xtras\TreeView.data

C:\Program Files\Macromedia\Director MX 2004\Configuration\Cross Platform
Resources\Macintosh\Xtras\TreeView.rsrc

If you are running Director MX 2004 10.1, you can also install the files necessary
for creation of cross-platform projector for Mac Classic. Again, go back to the
"TreeView" directory where the Xtra files were unpacked. Open the Mac Classic
directory. Now copy the files "TreeView.data" and "TreeView.rsrc" files to the
"Configuration\Cross Platform Resources\Classic\Xtras" directory used by Director
MX 2004. In a default installation of Director these files will end up at the
following locations:

Online Help

5

C:\Program Files\Macromedia\Director MX 2004\Configuration\Cross Platform
Resources\Classic\Xtras\TreeView.data

C:\Program Files\Macromedia\Director MX 2004\Configuration\Cross Platform
Resources\Classic\Xtras\TreeView.rsrc

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave and cross-platform
publishing features in Director MX 2004, to locate the files needed when
assembling the OSX and Classic versions of your projector. The xtrainfo.txt file is
located by default at:

C:\Program Files\Macromedia\Director MX 2004\Configuration\xtrainfo.txt

Double click the file to open it in notepad, or alternatively edit with any other text
editor. You need to add the following line to the end of the file:

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The
Xtra should be listed when you issue the command "put the xtralist" in the message
window. The Xtra functions will also be listed when you click the message window
Scripting Xtras button.

Online Help

6

TREEVIEW XTRA HELP: INSTALLATION: WINDOWS - DIRECTOR MX
AND 8.5

INSTALLING THE XTRA ON WINDOWS - Director MX and Director 8.5

Decompress the installation .zip file. This will unpack the Xtra, documentation and
sample files to a folder named "TreeView" on your machine. To install the Xtra,
just copy the file Windows\TreeView.x32 to the Director 8.5 or Director MX
XTRAS folder. If you have previously installed an older copy of the Xtra make
sure to remove or replace it.

These are the default locations of the Xtras folder for each application:

Director 8.5- C:\Program Files\Macromedia\Director 8.5\Xtras

Director MX- C:\Program Files\Macromedia\Director MX\Xtras

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave publishing features in
Director. The xtrainfo.txt file is located by default at:

Director 8.5 - C:\Program Files\Macromedia\Director 8.5\xtrainfo.txt

Director MX - C:\Program Files\Macromedia\Director MX\xtrainfo.txt

Double click the file to open it in notepad, or alternatively edit with any other text
editor. You need to add the following line to the end of the file:

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The

Online Help

7

Xtra should be listed when you issue the command "put the xtralist" in the message
window. The Xtra functions will also be listed when you click the message window
Scripting Xtras button (Director MX).

Online Help

8

TREEVIEW XTRA HELP: INSTALLATION: MACINTOSH - DIRECTOR 11

INSTALLING THE XTRA ON MAC OSX - Director 11

Double-click the installation .dmg file. This will mount a disk named "TreeView"
on your desktop.

The first step is to copy the Universal binary version of the Xtra, which will be
used in the authoring environment and also when creating Mac OSX projectors, for
both Intel and PPC machines. This file is located in the install disk image, at:

TreeView/Mac Universal/TreeView.xtra

This file needs to be copied to the Director 11 Xtras folder. The final pathname for
the Xtra in a default installation of Director 11 will be:

OSX Volume Name/Applications/Adobe Director
11/Configuration/Xtras/TreeView.xtra

Windows projectors can also be created directly on Director 11 running on Mac
OSX after installation of the Windows version of the Xtra. It is located on the
install disk, at:

TreeView/Windows/TreeView.x32

Copy this file to the Cross Platform resources directory in Director 11, so that it
will be available at:

OSX Volume Name/Applications/Adobe Director 11/Configuration/Cross Platform
Resources/Windows/Xtras/TreeView.x32

Online Help

9

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave and cross-platform
publishing features in Director 11, to locate the files needed when assembling the
Windows version of your projector. The xtrainfo.txt file is located by default at:

OSX Volume Name/Applications/Adobe Director 11/Configuration/xtrainfo.txt

Double click the file to open it in TextEdit, or alternatively edit with another text
editor. Make sure to save the file in plain text format, though. You need to add the
following line to the end of the file:

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The
Xtra should be listed when you issue the command "put the xtralist" in the message
window. The Xtra functions will also be listed when you click the message window
Scripting Xtras button.

Online Help

10

TREEVIEW XTRA HELP: INSTALLATION: MACINTOSH - DIRECTOR MX
2004

INSTALLING THE XTRA ON MAC OSX - Director MX 2004

Double-click the installation .dmg file. This will mount a disk named "TreeView"
on your desktop.

The first step is to copy the OSX version of the Xtra, which will be used in the
authoring environment and also when creating OSX projectors. This file is located
in the install disk image, at:

TreeView/Mac Carbon/TreeView

This file needs to be copied to the Director MX 2004 Xtras folder. The final
pathname for the OSX Xtra in a default installation of Director MX will be:

OSX Volume Name/Applications/Macromedia Director MX
2004/Configuration/Xtras/TreeView

Director MX 2004 running on Mac OSX can also be used to create Classic
projectors, for Mac OS versions 8 and 9. In order to enable this feature you need to
copy the Classic version of TreeView to the correct location in your Director MX
installation. First locate the Classic version of TreeView in the install disk:

TreeView/Mac Classic/TreeView

This file needs to be copied to the following location in the Director MX 2004
folder, to be used for cross-platform publishing. Copy it to:

OSX Volume Name/Applications/Macromedia Director MX
2004/Configuration/Cross Platform Resources/Classic MacOS/Xtras/TreeView

Online Help

11

Windows projectors can also be created directly on Director MX 2004 running on
Mac OSX after installation of the Windows version of the Xtra. It is located on the
install disk, at:

TreeView/Windows/TreeView.x32

Copy this file to the Cross Platform resources directory in Director MX 2004, so
that it will be available at:

OSX Volume Name/Applications/Macromedia Director MX
2004/Configuration/Cross Platform Resources/Windows/Xtras/TreeView.x32

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave and cross-platform
publishing features in Director MX 2004, to locate the files needed when
assembling the Classic MacOS and Windows versions of your projector. The
xtrainfo.txt file is located by default at:

OSX Volume Name/Applications/Macromedia Director MX
2004/Configuration/xtrainfo.txt

Double click the file to open it in TextEdit, or alternatively edit with another text
editor. Make sure to save the file in plain text format, though. You need to add the
following line to the end of the file:

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The

Online Help

12

Xtra should be listed when you issue the command "put the xtralist" in the message
window. The Xtra functions will also be listed when you click the message window
Scripting Xtras button.

Online Help

13

TREEVIEW XTRA HELP: INSTALLATION: MACINTOSH - DIRECTOR MX

INSTALLING THE XTRA ON MAC OSX - Director MX

Double-click the installation .dmg file. This will mount a disk named "TreeView"
on your desktop.

The first step is to copy the OSX version of the Xtra, which will be used in the
authoring environment and also when creating OSX projectors. This file is located
in the install disk image, at:

TreeView/Mac Carbon/TreeView

This file needs to be copied to the Director MX Xtras folder. The final pathname
for the OSX Xtra in a default installation of Director MX will be:

OSX Volume Name/Applications/Macromedia Director MX/Xtras/TreeView

Director MX running on Mac OSX can also be used to create Classic projectors, for
Mac OS versions 8 and 9. In order to enable this feature you need to copy the
Classic version of TreeView to the correct location in your Director MX
installation. First locate the Classic version of TreeView in the install disk:

TreeView Folder/Mac Classic/TreeView

This file needs to be copied to the following location in the Director MX folder:

OSX Volume Name/Applications/Macromedia Director MX/Classic
MacOS/Xtras/TreeView

Online Help

14

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave and cross-platform
publishing features in Director MX 2004, to locate the files needed when
assembling the Classic MacOS version of your projector. The xtrainfo.txt file is
located by default at:

OSX Volume Name/Applications/Macromedia Director MX/xtrainfo.txt

Double click the file to open it in TextEdit, or alternatively edit with another text
editor. Make sure to save the file in plain text format, though. You need to add the
following line to the end of the file:

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The
Xtra should be listed when you issue the command "put the xtralist" in the message
window. The Xtra functions will also be listed when you click the message window
Scripting Xtras button.

Online Help

15

TREEVIEW XTRA HELP: INSTALLATION: MACINTOSH - DIRECTOR 8.5

INSTALLING THE XTRA ON MAC OS 8 AND 9 - Director 8.5

Running under OSX, double-click the installation .dmg file. This will mount a disk
named "TreeView" on your desktop. To install the Xtra just copy the file
"TreeView" from the Mac Classic folder to the Xtras folder of your Director 8.5
installation. The final pathname for the Xtra will be for example:

Macintosh HD:OS9 Applications:Macromedia Director 8.5:Xtras:TreeView

Finally, you need to edit the xtrainfo.txt file to include information about
TreeView. This information is used by the Shockwave publishing features in
Director. The xtrainfo.txt file is located in the directory where Director 8.5 was
installed, for example at:

Macintosh HD:OS9 Applications:Macromedia Director 8.5:xtrainfo.txt

Double click the file to open it in SimpleText, or another editor capable of saving
plain text files. You need to add the following line to the end of the file:

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://download.tabuleiro.com/packages/TreeView/4/TreeView"]

You may want to customize this line in the future, to instruct Director to download
TreeView Shockwave packages from the same server that hosts your Shockwave
applications. This is covered in more detail at the Using the Xtra in Shockwave
section of the documentation. Restart Director for the changes to take effect. The
Xtra should be listed when you issue the command "put the xtralist" in the message
window.

Online Help

16

TREEVIEW XTRA HELP: WHAT TREEVIEW XTRA DOES

TreeView displays information in a hierarchical tree format similar to Windows
Explorer or the Macintosh's Finder. You can customize the tree, by choosing the
text font, icons, connector types, spacing and other properties. Since you structure
the tree branches and supply the data for the node names, you have great flexibility
to present a variety of different kinds of hierarchical data. Each node can report
back both rollovers and mouse clicks, and automatically handles highlighting if you
supply a highlight image.

Any type of hierarchical data that you want the user to browse and select can be
presented with TreeView Xtra. The graphics below show a file browser and an
interactive organizational chart.

Other applications include:

- Multi-tiered result records from a database query. Presenting the results in tree
format rather than as a flat report enables the user to drill down quickly to the areas
the user is interested in. For instance sales records could be presented organized by
region, then salesperson within region, then product within salesperson.

- Navigational map of CD or web site.

- Displaying the structure of an XML document

- Collapsible outline for navigating an electronic book

Online Help

17

Online Help

18

TREEVIEW XTRA HELP: GETTING STARTED

TreeView is an Asset Xtra. Unlike Scripting Xtras, Asset Xtras can be manipulated
using the score and cast windows, and their properties can be adjusted through
scripting, just like Director's built-in media types. You create a new TreeView cast
member by highlighting an empty cast slot and choosing Insert -> Tabuleiro Xtras
-> TreeView from Director's menu. If you drag the newly created cast member onto
the stage you will see a TreeView tree sprite with one default node called the root
node. Resize the sprite to the size you want the viewable area of the tree to be.
Create an approximately 200 x 200 pixel sprite to practice.

Initial appearance of a TreeView sprite:

In TreeView terms, nodes are the branches of the tree. A parent node contains other
nodes. A child node is contained by a parent node. A node can be the child of a
higher-up parent node, and have children of its own at the same time. The only
node that is not a child node of some other node is the root node because it is at the
top of the tree.You fill a tree by adding nodes to it, one at a time and specifying
their properties, such as the node text and icon. When a node is created it is
assigned a nodeID, which is a unique number.

Online Help

19

This is the code that created the tree above, written as a behavior attached to the
TreeView sprite:

on beginSprite me

makeSmallTree()

end

on makeSmallTree

root = sprite(me.spritenum).getRootNodeXTV()

sprite(me.spritenum).setNameXTV(root,"Animals")

birdsNodeID = sprite(me.spritenum).addChildXTV(root, 1, 0)

sprite(me.spritenum).setNameXTV(birdsNodeID,"Birds")

fishNodeID = sprite(me.spritenum).addChildXTV(root, 1, 0)

sprite(me.spritenum).setNameXTV(fishNodeID,"Fish")

tunaNodeID = sprite(me.spritenum).addChildXTV(fishNodeID, 1, 0)

sprite(me.spritenum).setNameXTV(tunaNodeID,"Tuna")

bassNodeID = sprite(me.spritenum).addChildXTV(fishNodeID, 1, 0)

sprite(me.spritenum).setNameXTV(bassNodeID,"Bass")

end

The setNameXTV method sets the text of the node. The addChildXTV method
creates a new node. Note that by specifying the fishNodeID as the parent in the last
two addChildXTV lines, new nodes were created under node "Fish" instead of
directly under the root node "Animals".

The simple tree above uses the default red box node icon. To assign graphics from
your Director cast to nodes, see the Icon Section. The background of a TreeView
sprite is transparent, and the sprite has no bounding outline, which allows you to
place graphics behind it and to frame it any way you like.You can also add
scrollbars, configure the tree layout and change the font.

When the user rolls over or clicks on a node's icon, the action generates a callback
message. You trap and act on the callback message in your code by creating a

Online Help

20

movie script with a designated name to handle the type of message you want to
trap. For instance if you wanted to be informed of the user's single clicks on tree
nodes you would create the following handler in a movie script:

on treeViewSingleClick refcon, nodeid, whichPart, spriteChannel

-- refcon: internal treeview id of tree sprite that was clicked

-- id: nodeID of the node that was clicked

-- whichPart: area of node that was clicked

-- 1 = icon area, 2 = text area

-- spriteChannel: sprite number of tree sprite

--

-- Your code below

--

put sprite(spriteChannel).getNameXTV(nodeid) into field "choice"

end

Note: the refcon is an internal TreeView number assigned to the TreeView sprite. It
is not the same as the sprite number. You can use it to distinguish between different
trees assigned to the same sprite channel in different frames of the movie:

sprite(3).setRefconXTV (5)

TREEVIEW BEHAVIORS

The TreeView demonstration movie contains drag and drop behaviors that can
build a tree from a hierarchy specified in a field, build a tree from a folder on the
user's hard drive or build thumbnails from a folder of images. Using the behaviors
does not require any Lingo scripting. Simply drag one of the behaviors to a
TreeView sprite and fill out the parameters. Each behavior contains full
documentation at the top of the script that explains how to fill out any parameter

Online Help

21

you may not understand.

The TreeView behaviors were intended for use by Lingo novices. In order to be as
general-purpose as possible they offer the ability to customize every TreeView
property that exists. The trade-off for this degree of flexibililty is slower
performance when creating the tree, since all possible properties must be set for
each tree node.

If you are an experienced Lingo programmer, and you are interested in displaying
the tree initially as quickly as possible, you should use the makeSmallTree example
as a starting point and keep the following perfomance tips in mind:

- Lingo repeat loops lock user interaction out. If you are creating a very large tree
(1000's of nodes) you may want to temporarily increase the frame rate and use an
exitFrame handler that adds one node per frame, rather than a repeat loop.This
method allows the user to continue working while the tree is being generated. If
you do not want the user to interact with the tree until it has finished building, keep
the tree sprite off stage (negative locV) until it has completely built, and then move
the sprite onto the stage.

- If you do choose to use a repeat loop, remove any Lingo lines from the loop that
do not have to execute every time a node is created. Avoid doing any text
manipulation if possible such as altering strings, or the text inside fields or text
members. These are the slowest operations in Lingo and will bog down the loop.

- Set the least number of properties possible at the node level. Take advantage of
treewide commands like getGlobalIconIDXTV and setAllNodesIconIDXTV to set
properties that will be the same for all nodes. If you are going to take the default for
a property, for instance if you are going to use the system font for every tree node,
do not set that property when creating the node.

- Do not set a variable to the result of addChildXTV unless you need the variable
farther down in the handler to add properties or children to the node. The functions
getNumChildrenXTV , getNthChildXTV , findChildXTV , getParentXTV and
getNameXTV will help you find any node by name later on. In particular, do not
create a global variable for each nodeID of the tree. This is unnecessary and may
use up all of your variable space.

REGISTRATION

The unregistered version displays a registraton warning, and is fully functional for
evaluation purposes.

Online Help

22

If you have purchased TreeView Xtra you received a serial number that can be
used to remove the warning. Make the following registration call once the first time
that each TreeView sprite appears in the score. Make sure you do it before using
any other TreeView commands on the sprite. Put the code in a sprite script on
theTreeView sprite on stage::

on beginSprite me

sprite(me.spritenum).setMagicXTV("48dkd2929")

-- your registration number is the second parameter

end

Online Help

23

TREEVIEW XTRA HELP: METHODS AT A GLANCE

Method and arguments Purpose

sprite(spriteReference).setMagicXTV
(registrationCodeString)

Prevents the demo dialog from
coming up after purchase.

Node Methods

Add/Delete Node

sprite(spriteReference).getRootNodeXTV () Returns the node ID of the top
node on the tree

sprite(spriteReference).addChildXTV
(parentNID, addWhere, preceedingNID)

Adds a new node to the tree as
a child of the specified parent
node.

sprite(spriteReference).removeChildXTV
(parentNID, childNID)

Removes the specified node
ID from the tree as well as any
of its children.

sprite(spriteReference).removeAllChildrenXTV
(parentNID)

Removes all of the children of
the specified node as well as
their children.

sprite(spriteReference).getNumChildrenXTV
(nodeID)

Returns the number of
top-level children of that node.

sprite(spriteReference).getNthChildXTV
(parentNID, childPosition)

Returns the nodeID of the
child node in the nth position.

sprite(spriteReference).findChildXTV
(parentNID, childNID)

Returns the node position, not
nodeID, of the child node
specified.

sprite(spriteReference).getParentXTV
(childNID)

Returns the node ID of the
parent node of the specified
child node

Node Properties

Online Help

24

sprite(spriteReference).getNodeLocationXTV
(nodeID)

Returns the coordinates of the
top, left corner of the specified
node's bounding box.

sprite(spriteReference).setNameXTV (nodeID,
nodeName)

Sets the text label displayed
for the specified node.

sprite(spriteReference).getNameXTV
(nodeID)

Returns the name of the node
specified by nodeID.

sprite(spriteReference).setIconIDXTV
(nodeID, iconType, iconID)

Sets the icon image used for a
particular icon type for an
individual node.

sprite(spriteReference).getIconIDXTV
(nodeID, iconType)

Returns the icon ID for the
specified icon type of the node
specified.

sprite(spriteReference).setFontIDXTV
(nodeID, fontID)

Sets the font that an individual
node's text will display in.

sprite(spriteReference).getFontIDXTV
(nodeID)

Returns the fontID from the
internal font list currently set
for the node.

sprite(spriteReference).setFontColorXTV
(nodeID, textRed, textGreen, textBlue)

Sets the text color for the
specified node.

sprite(spriteReference).getFontColorXTV
(nodeID)

Returns a string containing the
current RGB value set for the
node's text color.

sprite(spriteReference).setExpandedXTV
(nodeID, expandedFlag)

Expands a node to show the
node's top-level children.

sprite(spriteReference).getExpandedXTV
(nodeID)

Returns the current expand
state of the node.

sprite(spriteReference).setUserNumXTV
(nodeID, customNumber)

Stores a custom number
supplied by the Lingo
programmer with the node.

sprite(spriteReference).getUserNumXTV
(nodeID)

Returns the custom number
previously stored with the
node using setUserNumXTV

sprite(spriteReference).setUserStringXTV
(nodeID, stringNum, customString)

Links a string defined by the
Lingo programmer to a node.

Online Help

25

sprite(spriteReference).getUserStringXTV
(nodeID, stringNum)

Returns the specified custom
data string stored with a node
using setUserStringXTV.

sprite(spriteReference).setMouseStatusRequestXTV
(nodeID, singleClickFlag, doubleClickFlag,

mouseEnterFlag, mouseOverFlag,
mouseDownFlag)

Determines per node which
user actions will be reported to
the callback handlers.

sprite(spriteReference).getMouseStatusRequestXTV
(nodeID)

Returns a string with 5 flags,
either 1 or 0, separated by
spaces.

sprite(spriteReference).setAllNodesMouseStatusRequestXTV
(singleClick, doubleClick, mouseEnter,

mouseOver, mouseDown)

Resets for all existing nodes
which user actions will be
reported to the callback
handlers.

Tree Methods

Icon Properties

sprite(spriteReference).getNumIconsXTV () Returns the total number of
icons in the tree's icon list.

sprite(spriteReference).addIconXTV
(castlibNum, memberNum, paletteNum,

pixelWidth, pixelHeight)

Adds a bitmap cast member to
the tree's icon list.

sprite(spriteReference).getIconXTV (iconID) Retuns information for the
stored icon

sprite(spriteReference).setIconXTV (iconID,
castlibNum, memberNum, paletteNum,

pixelWidth, pixelHeight)

Resets the properties of an
existing icon.

sprite(spriteReference).getMaxIconSizeXTV
(iconType)

Returns the maximum height
and width of the specified icon
type.

sprite(spriteReference).setMaxIconSizeXTV
(iconType, pixelWidth, pixelHeight)

Limits the height and width of
the specified icon type.

sprite(spriteReference).setGlobalIconIDXTV
(iconType, iconID)

Sets the icon graphic used
throughout the tree for the
expander icon type if the
property has not yet been set

Online Help

26

individually for the node.

sprite(spriteReference).getGlobalIconIDXTV
(iconType)

Returns the global icon ID set
for the specified icon type.

sprite(spriteReference).setAllNodesIconIDXTV
(iconType, iconID)

Resets the icon for the
specified icon type for existing
nodes.

sprite(spriteReference).resetScrollbarsXTV(0) Scrolls the tree back up to the
top/left.

Connector Line and Spacing Properties

sprite(spriteReference).setLineModeXTV
(lineType)

Controls the type of line used
for the connecting lines
between nodes.

sprite(spriteReference).getLineModeXTV () Returns the current line type
used for the connecting lines
between nodes.

sprite(spriteReference).setMainColorsXTV
(lineRed, lineGreen, lineBlue)

Sets the color of the
connecting lines between
nodes.

sprite(spriteReference).getContentSizeXTV () Returns a string containing the
width and height in pixels of a
tree's content area.

sprite(spriteReference).setContentOffsetXTV
(horizontalPixels, verticalPixels)

Moves content area within
TreeView sprite.

sprite(spriteReference).setSpacingXTV
(indent, iconSideMargin, iconTopMargin,

expanderSideMargin, expanderTopMargin)

Adjusts the spacing between
tree icons.

sprite(spriteReference).getSpacingXTV () Returns a string containing the
tree's current spacing settings
separated by spaces.

Scroll Bar Properties

sprite(spriteReference).setScrollbarUsageXTV
(onOrOff)

Shows or hides the scrollbars
for a TreeView sprite.

Online Help

27

sprite(spriteReference).setScrollbarDataXTV
(castlibNum, startingMemberNum, 0)

Sets the images to use for the
various parts of the vertical
and horizontal scrollbar.

sprite(spriteReference).setScrollbarColorsXTV
(inactiveRed, inactiveGreen, inactiveBlue,

frameRed, frameGreen, frameBlue,activeRed,
activeGreen,activeBlue)

Sets the color used to draw the
frame outline of the scrollbars
and the color that fills the
interior of the scroll bar tracks.

sprite(spriteReference).resetScrollbarsXTV(0) Scrolls the tree back up to
top/left.

Text Properties

sprite(spriteReference).addFontXTV
(fontName, fontSize, fontStyle)

Adds a font to TreeView's
internal font list.

sprite(spriteReference).setFontXTV (fontID,
fontName, fontSize, fontStyle)

Modifies the properties of a
font in the font list.

sprite(spriteReference).getFontXTV (fontID) Returns a string containing
font properties set for a font in
the font list.

sprite(spriteReference).getNumFontsXTV () Returns the number of fonts
currently in TreeView's font
list.

sprite(spriteReference).setTextHiliteColorXTV
(textRed, textGreen, textBlue)

Sets the highlight color that
displays over node text when
the user clicks on a node.

Miscellaneous Properties

sprite(spriteReference).getVersionXTV () Returns the version string for
TreeView.

sprite(spriteReference).setRefconXTV
(newID)

Sets the id number that is
passed to TreeView callback
handlers to identify the tree
that the user clicked.

sprite(spriteReference).getRefconXTV () Returns the current refcon
number of the TreeView
sprite.

Online Help

28

sprite(spriteReference).redrawXTV () Updates the TreeView sprite
display after visual tree
properties have been changed.

Online Help

29

TREEVIEW XTRA HELP: METHODS DOCUMENTATION

setMagicXTV setUserNumXTV getContentSizeXTV

getUserNumXTV setContentOffsetXTV

NODE ADD/DELETE
METHODS setUserStringXTV setSpacingXTV

getRootNodeXTV getUserStringXTV getSpacingXTV

addChildXTV setMouseStatusRequestXTV

removeChildXTV getMouseStatusRequestXTV SCROLLBAR
PROPERTIES

removeAllChildrenXTV setAllNodesMouseStatusRequestXTV setScrollbarUsageXTV

getNumChildrenXTV setScrollbarDataXTV

getNthChildXTV ICON PROPERTIES setScrollbarColorsXTV

findChildXTV getNumIconsXTV resetScrollbarsXTV

getParentXTV addIconXTV

getIconXTV TEXT PROPERTIES

NODE PROPERTIES setIconXTV addFontXTV

getNodeLocationXTV getMaxIconSizeXTV setFontXTV

setNameXTV setMaxIconSizeXTV getFontXTV

getNameXTV setGlobalIconIDXTV getNumFontsXTV

setIconIDXTV getGlobalIconIDXTV setTextHiliteColorXTV

getIconIDXTV setAllNodesIconIDXTV

setFontIDXTV resetScrollbarsXTV MISCELLANEOUS
PROPERTIES

getFontIDXTV getVersionXTV

setFontColorXTV CONNECTOR LINE AND SPACING
PROPERTIES setRefconXTV

getFontColorXTV setLineModeXTV getRefconXTV

setExpandedXTV getLineModeXTV redrawXTV

getExpandedXTV setMainColorsXTV

Online Help

30

sprite(spriteReference).setMagicXTV(registrationCodeString) - where spriteReference is the sprite channel containing the
TreeView sprite and registrationCodeString is the serial number assigned at purchase. Always returns -1.

TreeView Xtra demo version will display a trial-version alert the first time you make a call to it, and will only allow you to
create 20 nodes. The full version of TreeView Xtra requires a serial number. If you have purchased the TreeView Xtra you
received a registration number along with the full version of TreeView Xtra. Replace the demo version of TreeView Xtra
with the full version in your Xtras folder. Before sending any other commands to a TreeView sprite, first call the register
method like so:

sprite(3).setMagicXTV("48dkd2929")

-- your registration number is the second parameter

Each TreeView sprite in a movie must be registered before it will respond to TreeView calls.

NOTE: A beginsprite handler executes BEFORE an exitframe handler. Make sure that setMagicXTV is in a handler that
will execute before any other treeview calls. If setMagicXTV is in a frame script, do not put TreeView calls in a
beginSprite handler if the sprite is on the same frame.

Example:

sprite(3).setMagicXTV("48dkd2929")

NODE ADD/DELETE METHODS

The following methods add or remove nodes from a tree or return information that helps determine which node you want
to add or delete. There are two ways of identifying nodes - by nodeID and by position relative to other nodes of the same
parent. NodeID is a unique number assigned to the node at node creation. Deleting or adding a node does not change the
node ID's of other nodes. Even though node ID's are assigned sequentially at creation, once nodes have been deleted and
more have been added, the node ID will no longer correspond to its position on the tree. You should not use nodeID as any
indication of where the node is in relation to other nodes of the same parent.

Online Help

31

Conversely, the node position property of a node does depend on what other nodes with the same parent currently exist at
the same level and does change if nodes are added to or deleted from the parent. Node position starts at 0 for the top node
and increments by 1. Use node position to cycle through all of a node's children. The function getNthChild returns
nodeID's when passed node position.

sprite(spriteReference).getRootNodeXTV() - where spriteReference is the sprite channel containing the TreeView sprite.
Returns the node ID of the top node on the tree. Returns the nodeID of the root node of the tree. Every TreeView tree
starts off with one root node, to which other nodes can be added. The root node ID is usually 0. The root node cannot be
deleted.

Example:

set root = sprite(2).getRootNodeXTV()

-- set name of root and hence name of tree

sprite(2).setNameXTV(root,"Accounting Records 1999")

sprite(spriteReference).addChildXTV(parentNID,addWhere,preceedingNID) - where spriteReference is the sprite channel
containing the TreeView sprite; parentNID is the integer node ID of the parent node; addWhere is the integer position to
add the child to among existing child nodes (0 => add the new node as the first child, 1 => add the new node as the last

Online Help

32

child, 2 => add the new node after the child indicated by preceedingNID); and preceedingNID is the integer node ID of the
node to add the new node after (Only used if addWhere argument is 2. Otherwise pass 0 in this argument). Returns the
nodeID of the new node or -1 if the operation is unsucessful.

Adds a new node to the tree as a child of the specified parent node. The new node can be placed before or after all of the
existing children or after the child node specified in preceedingNID. The nodeID assigned to a newly created node is
unique for the life of the tree sprite. For example, if you create a tree with 100 nodes initially, delete all of the nodes, and
add 100 more, the nodeID for the first node in the second batch of nodes will be 101.

Example:

root = sprite(2).getRootNodeXTV()

-- adds new child after any existing children of root

newNodeID = sprite(2).addChildXTV(root, 1, 0)

sprite(spriteReference).removeChildXTV(parentNID,childNID) - where spriteReference is the sprite channel containing
the TreeView sprite, parentNID is the integer node ID of the parent node and childNID is the integer nodeID of the child
of the parent node specified. Returns 0 if successful, or negative number if the operation unsuccessful. Removes the
specified node ID from the tree as well as any of its children.

Example:

on killByName treeSprite,parentID,theName

-- Deletes any node of specified parentID that has

-- the specified name

--

-- EX: killbyname(sprite 1,0,"Help")

--

set numChildren = sprite(treeSprite).getNumChildrenXTV(parentID)

if numChildren > 0 then

-- since index starts at 0, delete 1 to get last one

set lastChild = numChildren - 1

repeat with x = 0 to lastChild

Online Help

33

-- get nodeID at each position, starting at 0

set nodeID = sprite(treeSprite).getNthChildXTV(parentID,x)

-- if node's name is the one we want, delete it

if sprite(treeSprite).getNameXTV(nodeID) = theName then

sprite(treeSprite).removeChildXTV(parentID,nodeID)

exit repeat

end if

end repeat

end if

end

sprite(spriteReference).removeAllChildrenXTV(parentNID) - where spriteReference is the sprite channel containing the
TreeView sprite and parentNID is the integer node ID of the parent node. Returns 0 if successful or a negative number if
not. Removes all of the children of the specified node as well as their children. If the root node is used, this clears tree.

Example:

root = sprite(2).getRootNodeXTV()

-- wipes out all of the nodes when applied to root

err = sprite(2).removeAllChildrenXTV(root)

sprite(spriteReference).getNumChildrenXTV(nodeID) - where spriteReference is the sprite channel containing the
TreeView sprite and nodeID is the integer nodeID of the node to count children of. Returns the number of children or -1 if
not successful. Returns the number of top-level children of that node. Does not count any children of the top-level nodes.
Use the example handler to count all children including children of children.

Example:

on countNodes treeSprite, startNode, startCount

Online Help

34

-- treeSprite: sprite number of tree

-- startNode: nodeID to start counting at

-- startCount: always pass 0

--

-- Returns the total number of nodes contained by specified node

-- including "grandchildren" (contained by children)

-- If passed root node, returns the total number of nodes in tree

-- but does not count root node. Add 1 to result to count root node

-- Always pass 0 for startCount

--

-- EX: treeCount = countNodes(1,0,0)

-- treeCount = treeCount + 1

--

nodeID = startNode

curcount = startCount

numChildren = sprite(treeSprite).getNumChildrenXTV(nodeID)

curcount = curcount + numChildren

lastChild = numChildren - 1

repeat with pos = 0 to lastChild

childID = sprite(treeSprite).getNthChildXTV(nodeID,pos)

curCount = countNodes(treeSprite,childID,curcount)

end repeat

return curcount

end

Online Help

35

sprite(spriteReference).getNthChildXTV(parentNID,childPosition) - where spriteReference is the sprite channel
containing the TreeView sprite, parentNID is the integer nodeID of the parent node and childPosition is the integer
position relative to other child nodes, not nodeID. Returns the node ID of the node in the specified position or -1 if not
successful. Returns the nodeID of the child node in the nth position. Positions are numbered from 0, top node, and
increment by 1.

Example:

on showNames treeSprite, nodeID

-- Prints out the child position and name for the top-level

-- children of a given nodeID

--

-- EX: shownames(1,0)

--

-- Example output

--

-- "0: Acrobat Reader 4.0 Install Log"

-- "1: Acrobat™ Reader 4.0"

-- "2: Help:"

-- "3: Plug-Ins:"

--

numChildren = sprite(treeSprite).getNumChildrenXTV(nodeID)

lastChild = numChildren - 1

repeat with pos = 0 to lastChild

childID = sprite(treeSprite).getNthChildXTV(nodeID,pos)

put pos & ": " & sprite(treeSprite).getNameXTV(childID)

end repeat

end

Online Help

36

sprite(spriteReference).findChildXTV(parentNID,childNID) - where spriteReference is the sprite channel containing the
TreeView sprite, parentNID is the integer node ID of the parent node and childNID is the integer nodeID of the child of
the parent node specified. Returns the node position, not nodeID, of the child node specified or -1 if unsuccessful. This is
the complimentary function to getNthChildXTV, which returns nodeID when passed position.

Example:

on treeViewSingleClick refcon, nodeID, whichPart,spriteChan

-- Callback handler coded to detect when user

-- clicked the first node in any containing node

-- Assumes that tree sprite's refcon property has

-- been set to its sprite number

--

parentID = sprite(refcon).getParentXTV(nodeID)

parentName = sprite(refcon).getNameXTV(parentID)

pos = sprite(refcon).findChildXTV(parentID,nodeID)

if pos = 0 then alert "You clicked the first node in " & parentName

end

sprite(spriteReference).getParentXTV(childNID) - where spriteReference is the sprite channel containing the TreeView
sprite and childNID is the integer nodeID of the child of the parent node specified. Returns the nodeID of the parent of the
specified node or -1 if the child does not have a parent. Will only return -1 for the root node, since all other nodes must
have parents.

Example:

on treeViewSingleClick refcon, nodeID, whichPart,spriteChan

-- Callback handler coded to report name of

Online Help

37

-- containing node of any node clicked

-- Assumes that tree sprite's refcon property has

-- been set to its sprite number

--

parentID = sprite(refcon).getParentXTV(nodeID)

if parentID > -1 then

parentName = sprite(refcon).getNameXTV(parentID)

alert "You clicked a node in " & parentName

else

alert "This node has no parent"

end if

end

NODE PROPERTIES

sprite(spriteReference).getNodeLocationXTV(nodeID) - where spriteReference is the sprite channel containing the
TreeView sprite and nodeNID is the integer node ID of the node. Returns a string containing coordinates for the node in
format "h v" or "ERRORCODE=-50" if the node does not exist.

Returned string contains horizontal and vertical coordinates of the top, left point of the node's bounding box. A node's
bounding box is the smallest rectangle that encloses the node, text and the expander area and the vertical spacing specified
between nodes. A node's bounding box always includes room for an expander icon even if the node is not a parent node
and does not have an expander.

The coordinates returned are relative to the TreeView sprite's top/left corner. In order to get stage coordinates you must
add the TreeView Sprite's value for it's top/left to the value's returned. See example handler.

Example:

on showNode treeSprite,nodeID

Online Help

38

-- positions sprite over nodeID passed in

pointerGraphicSprite = 80

locstring = sprite(treesprite).getNodeLocationXTV(nodeID)

-- add the coords returned to the treeview sprite's coords to get coords for positioning

-- a sprite over the node

sph = sprite(treesprite).rect[1]

spv = sprite(treesprite).rect[2]

sprite(pointerGraphicSprite).loc = point(value(word 1 of locstring) + sph, value(word 2 of locstring) + spv)

end

sprite(spriteReference).setNameXTV(nodeID,nodeName) - where spriteReference is the sprite channel containing the
TreeView sprite, nodeNID is the integer node ID of the node and nodeName is the string node text. Returns 0 if successful
or a negative number if unsuccessful. Sets the text label displayed for the specified node.

Example:

root = getRootNodeXTV(sprite 2)

-- set name of root and hence name of tree

sprite(2).setNameXTV(root,"Accounting Records 1999")

sprite(spriteReference).getNameXTV(nodeID) - where spriteReference is the sprite channel containing the TreeView
sprite and nodeNID is the integer node ID of the node. Returns a string containing the node name or "". Returns the name
of the node specified by nodeID. Returns an empty string if the node is unnamed or the node is not found.

Example:

on treeViewSingleClick refcon, nodeID, whichPart,spriteChan

-- Assumes that tree sprite's refcon property has

Online Help

39

-- been set to its sprite number

--

alert "You clicked node " & sprite(refcon).getNameXTV(nodeID)

end

sprite(spriteReference).setIconIDXTV(nodeID,iconType,iconID) - where:

spriteReference is the sprite channel containing the TreeView sprite,

nodeNID is the integer node ID of the node,

iconType is the integer specifying which icon type to set for the node. Must be one of the following values:

0: normal icon

1: highlighted icon

2: plus expander

3: minus expander

iconID is the integer icon ID from the internal icon list.

Returns 0 if successful or a negative number if not.

Sets the icon image used for a particular icon type for an individual node. The icon ID specified refers to an icon in the
sprite's internal icon list, which contains entries that point to bitmap cast members. You cannot reference cast members
directly.

Depending on the size of your node icons and your layout choices, the last icon at the root level of a tree can appear
partially under the scrollbar when the user scrolls all the way to the bottom of the tree. If this happens and you don't want
to change your layout, you can fix it by adding an icon to the icon list with a 0-pixel height and width, adding a child node
to the root, and assigning the new node the blank icon with setIconIDXTV. The new blank node will not be visible to the
user or accept user clicks, but it will create a space at the bottom of the tree so that the last real node displays fully.

Example:

-- Sets the highlighted icon for node 3

sprite(2).setIconIDXTV(3,1,8)

Online Help

40

sprite(spriteReference).getIconIDXTV(nodeID,iconType) - where:

spriteReference is the sprite channel containing the TreeView sprite,

nodeNID is the integer node ID of the node,

iconType is the integer specifying which icon type to examine for the node. Must be one of the following values:

0: normal icon

1: highlighted icon

2: plus expander

3: minus expander

Returns the icon ID from the internal icon list of the icon type specified or -1 if the icon is not set.

Returns the icon ID for the specified icon type of the node specified. Each node is created with normal and highlighted set
to the default (0) and plus and minus unset (-1)

Example:

on treeViewSingleClick refcon, nodeID, whichPart,spriteChan

-- Uses the name of the cast member associated

-- with a node's icon to determine if a folder

-- or document has been clicked

--

-- Assumes that tree sprite's refcon property has

-- been set to its sprite number

--

iconID = sprite(refcon).getIconIDXTV(nodeID,0)

iconInfo = sprite(refcon).getIconXTV(iconID)

Online Help

41

cast = value(word 1 of iconinfo)

mem = value(word 2 of iconinfo)

nam = the name of member mem of castlib cast

if nam contains "folder" then

alert "You clicked a folder"

else

alert "You clicked a document"

end if

end

sprite(spriteReference).setFontIDXTV(nodeID,fontID) - where spriteReference is the sprite channel containing the
TreeView sprite, nodeNID is the integer node ID of the node and fontID is the integer font ID from the internal font list.
Returns 0 if successful or a negative number if not. Sets the font that an individual node's text will display in. Use
setFontXTV to set the font tree-wide for all nodes.

Example:

-- set node 3's font to fontID 4

err = sprite(1).setFontIDXTV(3,4)

sprite(spriteReference).getFontIDXTV(nodeID) - where spriteReference is the sprite channel containing the TreeView
sprite, nodeNID is the integer node ID of the node. Returns the font ID of the specified node or -1 if unsuccessful. Returns
the fontID from the internal font list currently set for the node.

Example:

fontID = sprite(2).getFontIDXTV(3)

Online Help

42

sprite(spriteReference).setFontColorXTV(nodeID,textRed,textGreen,textBlue) - where spriteReference is the sprite
channel containing the TreeView sprite, nodeNID is the integer node ID of the node, textRed is the integer RGB red value,
textGreen is the integer RGB green value, textBlue is the integer RGB blue value. Returns 0 if successful or a negative
number if not. Sets the text color for the specified node. Default is black.

Example:

err = sprite(1).setFontColorXTV(3,65535,20000,20000)

sprite(spriteReference).getFontColorXTV(nodeID) - where spriteReference is the sprite channel containing the TreeView
sprite and nodeNID is the integer node ID of the node. Returns a string containing the current RGB value set for the node's
text color. If there was an error, returns a string where the value of the first word of the string is > 65535. The string looks
like this:

"65535 20000 20000"

If there was an error, the string looks like this:

"33779664 33779736 24024528"

Example:

colorString = sprite(1).getFontColorXTV(23)

if value(word 1 of colorString) > 65535 then

alert "Error getting node's color value"

end if

sprite(spriteReference).setExpandedXTV(nodeID,expandedFlag) - where spriteReference is the sprite channel containing
the TreeView sprite, nodeNID is the integer node ID of the node and expandedFlag is 1 for TRUE, 0 for FALSE. Returns
0 if successful or a negative number if not. Expands a node to show the node's top-level children. Equivalent to the user
clicking on the expander icon next to the node.

Example:

-- collapse the root node, which collapses

Online Help

43

-- the entire tree

sprite(1).setExpandedXTV(0,0)

sprite(spriteReference).getExpandedXTV(nodeID) - where spriteReference is the sprite channel containing the TreeView
sprite and nodeNID is the integer node ID of the node. Returns the current expand state of the node. Returns 1 if the node
is currently expanded and 0 if it's not. Also returns 0 if passed a non-existent node.

Example:

expanded = sprite(1).getExpandedXTV(33)

sprite(spriteReference).setUserNumXTV(nodeID,customNumber) - where spriteReference is the sprite channel containing
the TreeView sprite, nodeNID is the integer node ID of the node and customNumber is the integer number supplied by the
programmer. Returns 0 if successful or a negative number if not.

Stores a custom number supplied by the Lingo programmer with the node. This is a very convenient way of associating
data other than the node name with a particular node. Since TreeView's callback handlers pass the clicked nodeID, you can
easily get both the node name (from getNameXTV) and the user number (from getUserNumXTV) For instance if the data
was coming from a store catalog you might want to store the integer price of the item in cents with the item's node, rather
than maintain a separate Lingo list for the information.

Example:

nodeID = sprite(1).addChildXTV(0,0,0)

sprite(1).setNameXTV(nodeID,"Allen wrench")

-- store $15.00 price with item (in cents)

sprite(1).setUserNumXTV(nodeID,1500)

sprite(spriteReference).getUserNumXTV(nodeID) - where spriteReference is the sprite channel containing the TreeView
sprite and nodeNID is the integer node ID of the node. Returns the integer value of the custom number stored with the
node, 0 if the node has no custom number, or -1 if the node does not exist. Returns the custom number previously stored

Online Help

44

with the node using setUserNumXTV.

Example:

customNum = sprite(1).getUserNumXTV(33)

sprite(spriteReference).setUserStringXTV(nodeID,stringNum,customString) - where spriteReference is the sprite channel
containing the TreeView sprite, nodeNID is the integer node ID of the node, stringNum is an integer between 0 and 2 and
customString is the string supplied by the Lingo programmer. Returns 0 if successful or a negative number if not.

Links a string defined by the Lingo programmer to a node. Like setUserNumXTV, this method enables you to link data
other than node name to a specified node. You can store up to 3 strings of any length with a node. The argument
stringNum specifies which storage location to use.

Example:

nodeID = sprite(1).addChildXTV(0,0,0)

sprite(1).setNameXTV(nodeID,"Allen wrench")

-- store part number

sprite(1).setUserStringXTV(nodeID,0,"KXJ0020")

-- store description

sprite(1).setUserStringXTV(nodeID,1,"Mighty fine wrench with gold handle")

sprite(spriteReference).getUserStringXTV(nodeID,stringNum) - where spriteReference is the sprite channel containing the
TreeView sprite, nodeNID is the integer node ID of the node and stringNum is an integer between 0 and 2. Returns the
custom string requested or "" if there is no custom string. Returns "" if the node or stringNum are invalid. Returns the
specified custom data string stored with a node using setUserStringXTV.

Example:

on treeViewSingleClick refcon, nodeID, whichPart,spriteChan

-- Gets data stored with the node and writes it

-- to a field when the user clicks on the node.

Online Help

45

--

-- Assumes that tree sprite's refcon property has

-- been set to its sprite number

--

partDescription = sprite(refcon).getUserStringXTV(nodeID,2)

put partDescription into field "description"

end

sprite (spriteReference).setMouseStatusRequestXTV
(nodeID,singleClickFlag,doubleClickFlag,mouseEnter/exitFlag,mouseMoveFlag,mouseDownFlag) - where:

spriteReference is the sprite channel containing the TreeView sprite;

nodeNID is the integer node ID of the node;

singleClickFlag is 1 for on, 0 for off;

doubleClickFlag is 1 for on, 0 for off;

mouseEnter/exitFlag is 1 for on, 0 for off;

mouseMoveFlag is 1 for on, 0 for off;

and mouseDownFlag is 1 for on, 0 for off.

Returns 0 if successful or a negative number if not.

Determines per node which user actions will be reported to the callback handlers. Pass 0 for a user action you want to
ignore or 1 to send the action to the callback handler. Pass 0 for all arguments to ignore all user activity for a particular
node. You must pass 0 for the last argument even though it isn't used. The default settings at node creation are single click
and doubleclick on, mouseEnter off. To set this property for all tree nodes at once use
setAllNodesMouseStatusRequestXTV.

Example:

-- turn single click, double click and mouseenter/exit on for node 33

Online Help

46

sprite(1).setMouseStatusRequestXTV(33,1,1,1,0,0)

sprite(spriteReference).getMouseStatusRequestXTV(nodeID) - where spriteReference is the sprite channel containing the
TreeView sprite and nodeNID is the integer node ID of the node. Returns a string containing the current user events
reported by the node. Returns a string with 5 flags, either 1 or 0, separated by spaces, representing the current state of
event detection for the specified node. See setMouseStatusRequestXTV for flag definitions.

Example:

-- node 3 has singleClick and doubleClick on only

put sprite(1).getMouseStatusRequestXTV(3)

-- "1 1 0 0 0"

sprite (spriteReference).setAllNodesMouseStatusRequestXTV
(singleClick,doubleClick,mouseEnter/exitFlag,mouseMoveFlag,mouseDownFlag) - where:

spriteReference is the sprite channel containing the TreeView sprite;

singleClickFlag is 1 for on, 0 for off;

doubleClickFlag is 1 for on, 0 for off;

mouseEnter/exitFlag is 1 for on, 0 for off;

mouseMoveFlag is 1 for on, 0 for off;

mouseDownFlag is 1 for on, 0 for off.

Always returns 0.

Resets for all existing nodes which user actions will be reported to the callback handlers. Nodes created after this method
has been used will still be created with default callback settings. Use setMouseStatusRequestXTV to set this property per
individual node.

Example:

Online Help

47

-- turn all event detection on

sprite(1).setAllNodesMouseStatusRequestXTV(1,1,1,1,1)

ICON PROPERTIES

You can replace the default TreeView red box node icon with your own custom graphic stored in a Director cast member.
You can also replace the plus and minus icons used for expanding or contracting parent nodes, and you can replace the
graphic elements of the scrollbars, such as the drag box and scroll arrows. Node graphics can be specified tree-wide for
simplicity, or you can set the graphics for each node individually. Each node has 4 icon types associated with it.

0: normal icon

1: highlighted icon

2: plus expander

3: minus expander

TreeView automatically displays the highlighted icon specified when the user clicks on the node, and automatically
displays the minus icon when the node is expanded or the plus icon when the node has not been expanded. If any of the
icon types have not been set for a node, TreeView uses the default TreeView graphic for that icon type.

TreeView icon methods do not reference cast members directly. They look to an internal TreeView icon list to get icon
information. You use the addIconXTV method to add a cast member graphic to the icon list to make it available for use by
any of the other icon methods. As each icon is added to the icon list TreeView assigns it a unique icon ID, similar to the
nodeID's of TreeView nodes. You must use icon ID's to refer to icon graphics in the icon list, not cast member numbers.

The iconlist stores a string with each icon ID that specifies its properties in the following format:

castlibNumber memberNumber memberPalette maximumWidth maximumHeight

castlibNumber: number of cast library bitmap graphic is in

memberNumber: member number in cast library of graphic

memberPalette: member number in cast library of graphic's palette

maximumWidth: width in pixels to scale graphic to if larger

Online Help

48

maximumHeight: height in pixels to scale graphic to if larger

This is what a typical return from the getIconXTV method looks like. Icon 3 in the icon list is member 6 of castlib 1, and it
will scale down to 16 x 16 if the graphic cast member is larger.

put sprite(1).getIconXTV(3)

-- "1 6 32 16 16"

Icon ID 0 is always the TreeView default red box icon. It cannot be modified or deleted. A TreeView sprite will always
return at least 1 from getNumIconsXTV even if no custom icons have been added, because icon 0 is present. Note that the
default icon returns -1 for castlib and member in its item information.

put sprite(1).getIconXTV(0)

-- "-1 -1 32 16 16"

sprite(spriteReference).getNumIconsXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns an integer representing the number of icon images in the tree's icon list. Returns the total number
of icons in the tree's icon list. The internal numbering of the list starts at 0 so subtract 1 from this number to get the last
internal icon index number.

Example:

on showicons spriteNum

-- Lists information for each loaded icon image

num = sprite(spriteNum).getNumIconsXTV()

-- icon index numbers start at 0

num = num - 1

repeat with x = 0 to num

iconInfo = sprite(spriteNum).getIconXTV(x)

put x & ") " & iconInfo

end repeat

end

Online Help

49

sprite(spriteReference).addIconXTV(castlibNum,memberNum,memberPalette,pixelWidth,pixelHeight) - where
spriteReference is the sprite channel containing the TreeView sprite, castlibNum is the integer cast library number of the
castlib containing the member to use for the new icon, memberNum is the integer member number of the bitmap member
to use for the new icon, memberPalette is the member number in the cast library of the graphic's palette, pixelWidth is the
integer width in pixels for the icon and pixelHeight is the integer height in pixels for the icon. Returns a positive integer
iconID of the icon added or -1 if the icon could not be added.

Adds a bitmap cast member to the tree's icon list. Adjusting the height and width of the icon will scale it. You can use this
to make a thumbnail icon from a fullsize image. If you attempt to add the same member twice the ID of the existing icon is
returned and no action is taken. Notice: in Director 11 you should use bitmaps with 16 or 32 bit color depth, as 8 bit ones
may fail to render on Windows Vista.

Example:

-- Make a 64x64 icon out of member "monkey"

memNum = the number of member "monkey"

libNum = the castlibnum of member "monkey"

sprite(1).addIconXTV(libNum,memNum,45,64,64)

sprite(spriteReference).getIconXTV(iconID) - where spriteReference is the sprite channel containing the TreeView sprite
and iconID is the positive integer ID of the icon in the tree sprite's icon list. Returns a string containing icon information
for the specified icon ID or "" if the icon does not exist. Retuns information for the stored icon in the format:

castlibNumber memberNumber memberPalette widthInPixels heightInPixels

Example:

on checkCastlib spriteNum,lookForLibNum

-- Returns TRUE if all icons are from

-- castlibnum passed in

--

num = sprite(spriteNum).getNumIconsXTV()

Online Help

50

num = num - 1

repeat with x = 1 to num

iconInfo = sprite(spriteNum).getIconXTV(x)

clib = value(word 1 of iconinfo)

if clib <> lookForLibNum then

return FALSE

end if

end repeat

return TRUE

end

sprite(spriteReference).setIconXTV(iconID,castlibNum,memberNum,memberPalette,pixelWidth,pixelHeight) - where
spriteReference is the sprite channel containing the TreeView sprite, iconID is the positive integer ID of the icon in the
tree sprite's icon list, castlibNum is the integer cast library number of the castlib containing the member to use for the icon,
memberNum is the integer member number of the bitmap member to use for the icon, memberPalette is the member
number in the cast library of the graphic's palette, pixelWidth is the integer width in pixels for the icon and pixelHeight is
the integer height in pixels for the icon. Returns 0 if successful or a negative number if not. Notice: in Director 11 you
should use bitmaps with 16 or 32 bit color depth, as 8 bit ones may fail to render on Windows Vista.

Resets the properties of an existing icon. If any of the tree's visible nodes use the icon, the visual properties of the nodes
change immediately.

Example:

on changePalette spriteNum,pixWidth,pixHeight

-- Maps all existing icons to a new width and height

num = sprite(spriteNum).getNumIconsXTV()

num = num - 1

repeat with iconID = 1 to num

iconInfo = sprite(spriteNum).getIconXTV(iconID)

Online Help

51

libNum = value(word 1 of iconInfo)

memNum = value(word 2 of iconInfo)

palNum = value(word 3 of iconInfo)

sprite(spriteNum).setIconXTV(iconID,libNum, memNum, palNum, pixWidth, pixHeight)

end repeat

end

sprite(spriteReference).getMaxIconSizeXTV(iconType) - where spriteReference is the sprite channel containing the
TreeView sprite and iconType is an integer specifying which icon type to examine for the node. Must be one of the
following values:

0: normal icon

1: highlighted icon

2: plus expander

3: minus expander

Returns a string containing the width and height or "ERRORCODE=-50" if an invalid iconType is specified. Returns the
current settings for the specified icon type.

Example:

put sprite(spriteNum).getMaxIconSizeXTV()

-- "32 32"

sprite(spriteReference).setMaxIconSizeXTV(iconType,pixelWidth,pixelHeight) - where:

spriteReference is the sprite channel containing the TreeView sprite,

iconType is an integer specifying which icon type to examine for the node. Must be one of the following values:

0: normal icon

Online Help

52

1: highlighted icon

2: plus expander

3: minus expander

pixelWidth is the integer width in pixels for the icon,

pixelHeight is the integer height in pixels for the icon.

Always returns 0.

Limits the height and width of the specified icon type. Icons linked to images larger than the specified height and width are
scaled to fit. Icon images smaller than the height and width are not changed. The values set in this method override any set
for individual icons with addIconXTV or setIconXTV if the limits of the icon are larger than those set in
setMaxIconSizeXTV. This method is a more convenient way to scale a variety of different sized icon graphics. Use
redrawXTV to refresh icons on stage after using this method.

This method does not scale scrollbar icons because they operate like "slipcovers", covering over the normal system
scrollbar parts, and must be scaled to the size of the system scrollbar.

Example:

on scaleIcons treeSprite

-- plain folder max 32x32

sprite(treeSprite).setMaxIconSizeXTV(0,32,32)

-- highlighted folder max 32x32

sprite(treeSprite).setMaxIconSizeXTV(1,32,32)

-- plus expander max 16x16

sprite(treeSprite).setMaxIconSizeXTV(2,16,16)

-- minus expander max 16x16

sprite(treeSprite).setMaxIconSizeXTV(3,16,16)

-- update the stage

sprite(treeSprite).redrawXTV()

end

Online Help

53

sprite(spriteReference).setGlobalIconIDXTV(iconType, iconID) - where:

spriteReference is the sprite channel containing the TreeView sprite,

iconType is an integer specifying which icon type to examine for the node. Must be one of the following values:

2: plus expander

3: minus expander

iconID is the positive integer ID of the icon in the tree sprite's icon list.

Returns 0 if successful or a negative number if there is an error.

Sets the icon graphic used throughout the tree for the expander icon type if the property has not yet been set individually
for the node. You can also set this property for individual nodes with setIconIDXTV which will override the global icon.
Use redrawXTV to refresh icons on stage after using this method. This method will change the icon of existing nodes with
no expander icons yet set individually for them, and will assign the icon to newly created nodes after it is issued.

Example:

-- resets the tree's default plus expander icon to icon id 44

sprite(1).setGlobalIconIDXTV(2,44)

sprite(spriteReference).getGlobalIconIDXTV(iconType) - where:

spriteReference is the sprite channel containing the TreeView sprite,

iconType is an integer specifying which icon type to examine for the node. Must be one of the following values:

2: plus expander

3: minus expander

Returns the integer icon id for the specified icon type. Returns the global icon ID set for the specified icon type. If a global
icon ID has not been set for the type, returns -1.

Example:

expanderPlus = sprite(1).getGlobalIconIDXTV(2)

Online Help

54

sprite(spriteReference).setAllNodesIconIDXTV(iconType,iconID) - where:

spriteReference is the sprite channel containing the TreeView sprite,

iconType is an integer specifying which icon type to examine for the node. Must be one of the following values:

0: normal icon

1: highlighted icon

2: plus expander

3: minus expander

iconID is the positive integer ID of the icon in the tree sprite's icon list.

Returns 0 or a negative number if there has been an error.

Resets the icon for the specified icon type for existing nodes. The difference between setGlobalIconIDXTV and
setAllNodesIconIDXTV is that setGlobalIconIDXTV changes the default icon used when new nodes are created while
setAllNodesIconIDXTV only alters the icons of existing nodes.

Example:

-- sets the normal icon of existing nodes to icon 88

sprite(1).setAllNodesIconIDXTV(0,88)

sprite(spriteReference).setClickboxColorsXTV(frameRed,frameGreen,frameBlue,fillRed,fillGreen,fillBlue) - where
spriteReference is the sprite channel containing the TreeView sprite, frameRed is the integer RGB red value, frameGreen
is the integer RGB green value, frameBlue is the integer RGB blue value, fillRed is the integer RGB red value, fillGreen is
the integer RGB green value, fillBlue is the integer RGB blue value. Always returns 0. Sets the colors used by the default
expander box icon. Does not change custom expander icons.

Example:

-- set expander box outline to blue and

Online Help

55

-- interior to green

sprite(1).setClickboxColorsXTV(0,0,65535,0,65535,0)

CONNECTOR LINE AND SPACING PROPERTIES

The following methods control the layout options of the tree as a whole. Keep in mind that individual node icons of
varying sizes will also impact layout. For a more uniform layout, use setMaxIconSizeXTV to scale down larger icon
graphics to one size.

sprite(spriteReference).setLineModeXTV(lineType) - where spriteReference is the sprite channel containing the TreeView
sprite and lineType is the integer type number, and one of the following:

0: solid

1: dotted

2: none

Always returns 0.

Controls the type of line used for the connecting lines between nodes. Tree updates immediately when this property is set.
Use setMainColorsXTV to set the connecting line color.

Example:

-- remove connecting lines

sprite(1).setLineModeXTV(2)

sprite(spriteReference).getLineModeXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns the integer value of the current line mode set for the tree. Returns the current line type used for
the connecting lines between nodes.

Example:

Online Help

56

sprite(1).currentLineType = getLineModeXTV()

sprite(spriteReference).setMainColorsXTV(lineRed,lineGreen,lineBlue) - where spriteReference is the sprite channel
containing the TreeView sprite, lineRed is the integer RGB red value, lineGreen is the integer RGB green value and
lineBlue is the integer RGB blue value. Always returns 0. Sets the color of the connecting lines between nodes. Setting
this property changes the color of connecting lines already drawn on stage immediately.

Example:

-- sets connecting line color to blue

sprite(1).setMainColorsXTV(0,0,44000)

sprite(spriteReference).getContentSizeXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns a string containing current width and height of a tree's content area, separated by a space.

Returns a string containing the width and height in pixels of a tree's content area. Typical return looks like this: "220 447".
The content area is the area occupied by a tree's icons, not the size of the TreeView sprite. If the user expands a tree node,
the height of the content area will change but the height of the TreeView sprite will not. If the content area extends beyond
the bounds of the TreeView sprite, and you have scrollbars turned on, the scrollbars will activate, otherwise the user will
not be able to access any nodes outside of the boundaries of the TreeView sprite.

If you change the content size of the tree inside a callback handler by using commands like setExpandedXTV or by
changing the icon of a node to an icon of a different size, the value returned by getContentSize will not reflect the new size
of the tree if you call it inside the same callback handler. You must call it after the callback handler has finished to get the
new tree size.

Example:

on treeViewSingleClick refcon, nodeID, whichPart,spriteChan

-- Makes scrollbars visible only when content

-- exceeds sprite boundaries

--

-- Assumes that tree sprite's refcon property has

-- been set to its sprite number

Online Help

57

--

sprite(refcon).contentSize = getContentSizeXTV()

contentWidth = value(word 1 of contentSize)

contentHeight = value(word 2 of contentSize)

put refcon

if (contentWidth > the width of sprite refcon) or (contentHeight > the height of sprite refcon) then

sprite(refcon).setScrollbarUsageXTV(TRUE)

else

sprite(refcon).setScrollbarUsageXTV(FALSE)

end if

end

sprite(spriteReference).setContentOffsetXTV(horizontalPixels,verticalPixels) - where spriteReference is the sprite channel
containing the TreeView sprite, horizontalPixels is the number of pixels to offset the content toward left, verticalPixels is
the number of pixels to offset the content upward. Always returns 0.

Moves content area within TreeView sprite. Positive numbers move the content up and to the left (outward). Negative
numbers move the content down and to the right (inward).

After setting this property with Lingo, the scrollbars consider point 0,0 (top/left) of the tree to be the beginning of the
offset. Always call resetScrollbarsXTV after adjusting this property for a sprite with scrollbars on. Otherwise, if the
content shifts so that the scrollbars become inactive, the user may be unable to access the content.

----------- top of tree, point 0,0

| > TOPNODE

| > CHILD

After setContentOffsetXTV(sprite treesprite, 0, -20)

----------- top of tree, point 0,0

Online Help

58

|

|

| > TOPNODE

| > CHILD

Note: This command was intended to allow developers to add white space around the nodes at the top of the tree. It can be
used to scroll the tree down to show a particular node, but the scrollbars will consider point 0,0 to be the start of the offset
so the user will not be able to scroll above the current offset.

Example:

-- Moves the tree content area 10 pixels in from

-- left edge of TreeView sprite edge and 10 pixels

-- down from top of TreeView sprite edge

sprite(1).setContentOffsetXTV(-10,-10)

sprite(spriteReference).setSpacingXTV(indent,iconSideMargin,iconTopMargin,expanderSideMargin,expanderTopMargin)
- where spriteReference is the sprite channel containing the TreeView sprite, indent is the integer pixels to indent each
level of the tree, iconSideMargin is the integer pixels to indent the icons to the right of the vertical line, iconTopMargin is
the integer pixels of the vertical space between icons, expanderSideMargin is the integer pixel width of the expander icon,
expanderTopMargin is the integer pixel height of the expander icon. Always returns 0.

Adjusts the spacing between tree icons. The width and height of the expander icon can only be adjusted for the TreeView
default icon. Setting values for either property will not change the size of a custom expander icon. Negative values are
allowed. Default values are:

indent: 16

iconSideMargin: 4

iconTopMargin: 4

expanderSideMargin: 9

expanderTopMargin: 9

Online Help

59

Example:

-- Keep the defaults for other props but change the

-- vertical space between icons

sprite(1).setSpacingXTV(16,4,10,9,9)

sprite(spriteReference).getSpacingXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns a string containing the tree's current spacing settings separated by spaces. Returned string has the
following format:

indent iconSideMargin iconTopMargin expanderSideMargin expanderTopMargin

Example:

put sprite(1).getSpacingXTV()

-- "16 4 4 9 9"

SCROLLBAR PROPERTIES

The following methods control the display and appearance of the scrollbars.

sprite(spriteReference).setScrollbarUsageXTV(onOrOff) - where spriteReference is the sprite channel containing the
TreeView sprite and onOrOff is 0 for off, 1 for on. Always returns 0. Shows or hides the scrollbars for a TreeView sprite.
If the tree's content area is not large enough to scroll, TreeView will automatically draw the scrollbars in an inactive state.
Using this method resets the content offset to 0,0.

Example:

-- Hide scrollbars

sprite(1).setScrollbarUsageXTV(0)

Online Help

60

sprite(spriteReference).setScrollbarDataXTV(castlibNum,startingMemberNum,0) - where spriteReference is the sprite
channel containing the TreeView sprite, castlibNum is the integer castlib number containing the scrollbar icons,
startingMemberNum is the integer member number of the first scrollbar icon and notUsed is reserved for future use, so
always pass 0. Returns 0 if successful or a negative number if not.

Sets the images to use for the various parts of the vertical and horizontal scrollbar. Contrary to node icons, the starting
image for the scrollbar is specified directly as a cast member. To prepare to use this method you must first place the 17
graphics that make up the different parts of the scrollbar in contiguous cast slots in the following order. They do not have
to start at cast member 1, but they do have to be in the order specified, with no unrelated cast members in between them.

Member order in cast for scrollbar graphics

Position Scrollbar part

1 Horizontal bar, left arrow, active/up

2 Horizontal bar, left arrow, down

3 Horizontal bar, left arrow, inactive

4 Horizontal bar, right arrow, active/up

5 Horizontal bar, right arrow, down

6 Horizontal bar, right arrow, inactive

7 Vertical bar, top arrow, active/up

8 Vertical bar, top arrow, down

9 Vertical bar, top arrow, inactive

10 Vertical bar, bottom arrow, active/up

11 Vertical bar, bottom arrow, down

12 Vertical bar, bottom arrow, inactive

13 Horizontal thumb up

14 Horizontal thumb down

15 Vertical thumb up

16 Vertical thumb down

Online Help

61

17 Corner box

The horizontal scrollbar height and the vertical scrollbar width will adjust to accomodate the size of the thumb and arrow
icon images, however, it is better to make the images as close to the size of the usual system scrollbar parts as possible.
Otherwise you could create scrollbars that don't align properly. The corner box image will be cropped to the size of corner
space created by the two scrollbars.

Example:

-- Set the scrollbar images to member 83 and following

sprite(1).setScrollbarDataXTV(1, 83, 0)

sprite (spriteReference).setScrollbarColorsXTV
(inactiveRed,inactiveGreen,inactiveBlue,frameRed,frameGreen,frameBlue,activeRed,activeGreen,activeBlue) - where
spriteReference is the sprite channel containing the TreeView sprite, inactiveRed is the integer RGB red value,
inactiveGreen is the integer RGB green value, inactiveBlue is the integer RGB blue value, frameRed is the integer RGB
red value, frameGreen is the integer RGB green value, frameBlue is the integer RGB blue value, activeRed is the integer
RGB red value, activeGreen is the integer RGB green value, and activeBlue is the integer RGB blue value. Always returns
0.

Sets the color used to draw the frame outline of the scrollbars and the color that fills the interior of the scroll bar tracks.
Note: this command has changed since version 1.0. It requires 3 more parameters to specify the color of the active
scrollbars.

Example:

-- Configure scrollbars for black outline, blue active, gray inactive

sprite(1).setScrollbarColorsXTV (20000, 20000, 20000, 0, 0, 0,0, 0, 65535)

sprite(spriteReference).resetScrollbarsXTV(0) - where spriteReference is the sprite channel containing the TreeView sprite
and reservedForFutureUse is reserved for future use, so always pass 0. Always returns 0. Repositions the tree content and
scrollbars so tree content is at top/left. Scrolls vertical scrollbar all the way up and horizontal scrollbar all the way left.

Example:

sprite(1).setExpanded(FALSE)

Online Help

62

sprite(1).resetScrollbarsXTV(0)

TEXT PROPERTIES

You can replace the default TreeView system font used to display node text with any font resident on the user's system or
with a Director 7 embedded font. You set the font for each node's text individually using setFontIDXTV. There is no
tree-wide method for setting the font, however you can set the font property at the node's creation when you set other
properties for the node such as its text and icon.

TreeView icon methods do not reference fonts directly by name. They look to an internal TreeView font list to get font
information. You use the addFontXTV method to add a system or Director 7 font to the font list to make it available for
use by any of the other font methods. As each font is added to the font list TreeView assigns it a unique font ID, similar to
the node ID's of TreeView nodes. You must use font ID's to refer to fonts in the font list, not font names.

The font list stores a string with each font ID that specifies its properties in the following format:

fontName pointSize styleNumber

fontName: name of font associated with this font id

pointSize: point size to use for this font id

styleNumber: one of the following specifies font style for this font id

0: plain

1: bold

2: italic

3: bold and italic

This is what a typical return from the getFontXTV method looks like. Font 1 in the font list is 18 point Chicago bold.

put sprite(1).getIconXTV(1)

-- "Chicago 18 1"

Online Help

63

Font ID 0 is always the TreeView default system font. It cannot be modified or deleted. A TreeView sprite will always
return at least 1 from getNumFontsXTV even if no custom fonts have been added, because font 0 is present.

sprite(spriteReference).addFontXTV(fontName,fontSize,fontStyle) - where spriteReference is the sprite channel
containing the TreeView sprite, fontName is the string containing the system name for the font, fontSize is the integer font
point size and fontStyle is the integer font style, one of the following:

0: plain

1: bold

2: italic

3: bold and italic

Returns the font ID in the font list of the newly-added font.

Adds a font to TreeView's internal font list. Since fonts must be added with a particular point size and style, to use both
Courier bold and Courier plain, for example, make two entries in the font list. You cannot add a font with all of the same
parameters twice. In other words you can't add "Arial 12 plain" twice. If a font with the same specs is already in the list,
that font's ID is returned and no action is taken.

Example:

--Adds 18-point Helvetica bold to the font list

sprite(1).addFontXTV("Helvetica",18,1)

sprite(spriteReference).setFontXTV(fontID,fontName,fontSize,fontStyle) - where spriteReference is the sprite channel
containing the TreeView sprite, fontID is the integer font ID of the existing font in the font list, fontName is the string
containing the system name for the font, fontSize is the integer font point size and fontStyle is the integer font style, one of
the following:

0: plain

1: bold

2: italic

Online Help

64

3: bold and italic

Returns 0 or a negative number if unsuccessful.

Modifies the properties of a font in the font list. If the font is being used by any node, the node's text changes to use the
new font. You cannot change the properties of font 0, the default font. If you add at least one font to the font list and create
all nodes initially to use that font instead of the default font, you can change the font for all tree nodes easily by using
setFontXTV to change the properties of the existing font.

Example:

-- Change the properties of font 2 and hence the

-- font of all nodes using font ID 2

sprite(1).setFontXTV(2,"Charcoal",12,0)

sprite(spriteReference).getFontXTV(fontID) - where spriteReference is the sprite channel containing the TreeView sprite
and fontID is the integer font ID of the existing font in the font list. Returns a string containing font properties set for a
font if it exists in the font list or "" if it doesn't. The return string has the following format:

"fontName pointSize style"

Example:

put sprite(1).getFontXTV(1)

-- "Chicago 18 0"

sprite(spriteReference).getNumFontsXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns the number of fonts currently in TreeView's font list. Since the font list always contains font 0,
the default font, this number can never be less than one. Since the font ID's start at 0, subtract 1 from the return value to
get the ID of the last font in the list.

Example:

on displayFontList treeSprite

Online Help

65

lastFontID = sprite(treeSprite).getNumFontsXTV() - 1

repeat with x = 1 to lastFontID

put x & ") " & sprite(treeSprite).getFontXTV(x)

end repeat

end

displayFontList(2)

-- "1) Apple Chancery 10 3"

-- "2) Arial 12 1"

-- "3) Capitals 14 2"

sprite(spriteReference).setTextHiliteColorXTV(textRed,textGreen,textBlue) - where spriteReference is the sprite channel
containing the TreeView sprite, textRed is the integer RGB red value, textGreen is the integer RGB green value, and
textBlue is the integer RGB blue value. Always returns 0. Sets the highlight color that displays over node text when the
user clicks on a node. TreeView automatically highlights a node's name when the user clicks on the node. The default
highlight color is blue.

Example:

-- Set the text highlight color to red

sprite(2).setTextHiliteColorXTV(65535,0,0)

MISCELLANEOUS PROPERTIES

The following properties determine how the TreeView sprite is identified in the callback handlers and update its display on
stage.

Online Help

66

sprite(spriteReference).getVersionXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns the string containing the version number of TreeView Xtra currently loaded.

Example:

put sprite(2).getVersionXTV()

-- "3.0"

sprite(spriteReference).setRefconXTV(newID) - where spriteReference is the sprite channel containing the TreeView
sprite and newID is the integer to use to identify this tree. Always returns 0. Sets the id number that is passed to TreeView
callback handlers to identify the tree that the user clicked. Default is 0. This property can be useful to distinguish between
different trees that appear in the same sprite channel at different times or in different frames.

Example:

on beginSprite me

-- Sprite behavior that sets this

-- tree's refcon to its sprite number

treeSpriteNum = the spritenum of me

sprite(treeSpriteNum).setRefconXTV(treeSpriteNum)

end

sprite(spriteReference).getRefconXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. Returns the current refcon number of the TreeView sprite. Refcon will be 0 if it has never been set.

Example:

curRefCon = sprite(1).getRefconXTV()

Online Help

67

sprite(spriteReference).redrawXTV(spriteReference) - where spriteReference is the sprite channel containing the
TreeView sprite. No return. Updates the TreeView sprite display after visual tree properties have been changed.

Example:

sprite(1).redrawXTV()

Online Help

68

TREEVIEW XTRA HELP: CALLBACK HANDLERS

When a user action occurs over one of TreeView's nodes you can
choose to have a message sent to a callback handler. The callback
handler for each event must use the designated name for that event's
handler and can reside in a sprite, frame, cast member or movie type of
script. When a TreeView event occurs, such as "single click" it is sent
to the script levels in the following order, until it hits a level containing
a callback handler for it.

sprite --> cast member --> frame --> movie

The designated callback handlers are as follows:

on treeViewSingleClick refcon, nodeId, whichPart, spriteChannel

end

Called when the user clicks within the bounding box of a node. Detects
event on icon or name.

on treeViewDoubleClick refcon, nodeId, whichPart, spriteChannel

end

Called when the user double-clicks within the bounding box of a node.
Detects event on icon or name.

on treeViewMouseEnter refcon, nodeId, whichPart, spriteChannel

end

Online Help

69

Called once when the mouse enters the bounding box of the node, if the
mouse is up. Detects events on expander, icon, name and whitespace.

on treeViewMouseExit refcon, nodeId, whichPart, spriteChannel

end

Called once when the mouse leaves the bounding box of the node, if the
mouse is up. The whichpart parameter is not used and always reports
whitespace.

on treeViewMouseMove refcon, nodeId, whichPart, spriteChannel

end

Called while the mouse is within the bounding box of a node. Detects
events on expander, icon, name and whitespace.

on treeViewMouseDown refcon, nodeId, whichPart, spriteChannel

end

Called when the user mouses down within the bounding box of a node.
Detects events on expander, icon, name and whitespace.

Each callback handler receives the same information about the user
event:

refcon: custom number that is not a sprite number but is used to
distinguish between TreeView sprites

id: node ID of node user action happened on

Online Help

70

whichPart: 0: expander area of node 1: icon area of node, 2: text area of
node 3: whitespace within node bounding box

The SingleClick and DoubleClick events only report icon or text for
whichpart.

channel: sprite number of the treeview sprite the action happened on

To customize which handlers should be activated, use
setAllNodesMouseStatusRequestXTV to set event-handling tree-wide,
or setMouseStatusRequestXTV to set it per individual node. Both
SingleClick and DoubleClick are initially on by default. Note that the
mouseEnterFlag argument of those methods turns on both the
MouseEnter and MouseExit callback handlers.If both SingleClick and
DoubleClick are enabled, the first click of a user's double-click action
triggers the SingleClick callback.

All of the programming of TreeView sprite interactivity happens inside
of a callback handler. You can use the information passed in to the
handler to read or change tree properties in response to user actions.

USING CALLBACK HANDLERS IN BEHAVIORS

When a TreeView callback handler is included in a behavior, it passes
back a parameter in the first position that is a refcon reference, not a
reference to the behavior.The parameter that is usually "me" instead
contains a reference to the TreeView refcon that is receiving the event.
That means that a TreeView callback handler inside a behavior will not
know about the behavior's properties. They will all come up as Void.
To work around this, call another method inside the behavior, and pass
it any information it may need that came from the TreeView callback
handler. Do something like this:

property myProp

on beginSprite me

myProp = 8

end

Online Help

71

on treeViewSingleClick refcon, nodeID, whichpart,spriteChan

-- myProp will be Void

sendSprite(spriteChan,#anotherHandler,refcon,nodeID,whichpart)

end

on anotherHandler me,refcon,nodeID,whichpart

-- "me" the first param, refers to behavior again

-- so myProp will be recognized, and we still have the values returned

-- from the callback handler

--

if myProp = 8 then

alert(string(nodeID))

end if

end

IMPORTANT NOTE

You cannot do a "go frame" from inside a callback handler to a new
frame that does not have the same TreeView sprite in the same channel
or Director will crash. The same thing will happen with "go movie".
One workaround is to keep the TreeView sprite in the same channel
throughout the movie and move it offstage in the frames where it
should not show. Another workaround is to set a flag in the callback
handler and have an exitframe handler execute the "go" when the flag
changes.

Online Help

72

EXAMPLE

Here is a simple example of callback handling code:

on treeViewDoubleClick refcon, id, whichPart,channel

nodeID = id

treesprite = channel

-- Retrieve the path to an application stored in the node's

-- user storage area previously, with setUserStringXTV,

-- and launch it

--

programLaunchPath = sprite(treesprite).getUserStringXTV(nodeID,0)

open programLaunchPath

end

Online Help

73

TREEVIEW XTRA HELP: EVENT HANDLING

TreeView handles mouseUp and mouseDown events on TreeView sprites
completely independently from Director. That means that Director never receives
these events for a TreeView sprite and mouseUp or mouseDown handlers in sprite
or cast scripts placed on the TreeView sprite or cast member will not be called.
You can trap normally for other events in behavior or cast scripts on TreeView
sprites/members.

Online Help

74

TREEVIEW XTRA HELP: ERROR CODE LIST

Return Value Meaning

0 No error occurred

-1 Call could not complete successfully / node does not exist.

-2 Out of memory

-50 One or more of the parameters to the method was wrong

-38 Tried to add a child, and setMagicXTV was not called with
the correct serial number. Returned from methods which add
child nodes

Any other
negative
number

Mac system or Windows system error. This should be a rare
occasion. Consult Mac or Win system documentation.

Online Help

75

TREEVIEW XTRA HELP: COLOR

All TreeView methods that require color specifications use RGB values, and expect
red, green and blue values in the range of 0 to 65535. If you are more comfortable
with 0 - 255 values, the way Director 7 handles RGB, you can convert those values
to TreeView values like so:

on rgbConvert colorList

-- Expects a list like this [r,g,b] where

-- rgb are the color values in scale 0 - 255

-- Returns a list in the same format with

-- color values in scale 0 - 65535

--

-- EX: put rgbConvert([255,150,0])

-- [65535, 38550, 0]

--

newList = []

repeat with x = 1 to 3

convertedColor = (65535/255) * getAt(colorList,x)

add newList,convertedColor

end repeat

return newList

end

Online Help

76

TREEVIEW XTRA HELP: JAVASCRIPT

XTRAS AND JAVASCRIPT

Director MX 2004 added JavaScript as an alternative scripting language, and it is
also available in Director 11. The syntax in the methods doc for TreeView Xtra
works for both Lingo and JavaScript. For more info, see the tech note on JavaScript
and Xtras.

Online Help

77

http://xtras.tabuleiro.com/support/technotes/general/gn005.htm
http://xtras.tabuleiro.com/support/technotes/general/gn005.htm

TREEVIEW XTRA HELP: SHOCKWAVE

TreeView Xtra can be used in Shockwave: the distribution package
provides packaged Xtras that are downloaded automatically to the user's
machine, and installed on demand. Please consult Adobe's web site for a
complete overview of the Xtras automated download mechanism: read
the Shockwave Xtras downloading overview technote. The basic steps
required to make TreeView Xtra available for download are outlined
below.

To create a Shockwave movie that will auto-download the Xtra to the
user's hard drive you must do the following, in this order:

1. Upload the packaged Xtra files to your web server

2. Modify the entry for TreeView Xtra in file xtrainfo.txt to point to the
packaged Xtra files on your server

3. Do Modify -> Movie -> Xtras, select TreeView Xtra, and check the
"Download if Needed" option

Once you have completed steps 1 and 2, you can create other Shockwave
movies by doing only step 3.

PACKAGED FILES

Your TreeView Xtra archive contains a subfolder called "Shockwave".
There are four files inside it:

TreeView.w32 - Win 32 package

TreeView.ppc - Mac Classic package

TreeView.carb - Mac Carbon package

TreeView.xpku - Mac Universal Binary package

Online Help

78

http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14726

All packages contain the TreeView Xtra for that platform. Depending on
the user's platform, a package autodownloaded to the user's hard drive
will install the correct TreeView Xtra for the user's platform into their
Shockwave support folder.

If, for some reason, you choose not to make your Shockwave movies
autodownload the package files, you can have the user install the right
Xtra for their platform into the Shockwave support folder manually.

Upload all package files to the same directory on your web server. Use a
"binary" or "raw", not "text" transfer. If the packages are uploaded to two
different directories, autodownloading will not work. Do not rename the
package files.

If you are going to distribute TreeView Xtra with Shockwave movies, we
recommend that you use your own web server to do so. Packages are
available at Tabuleiro's download services, but we reserve the right to
refuse access, without notice, to any referring URL that generates
excessive traffic.

The TreeView Xtra packages included with the download have been
signed and packaged by Tabuleiro, and will present the following
security message to users of your Shockwave movies when they are
installed for the first time:

You may choose to repackage TreeView Xtra and sign it with your own
Verisign certificate. You might want to do this if you want your own
company name to appear in the auto-download dialog box the user sees
when an auto-download is initiated. Adobe is the best source of

Online Help

79

http://www.adobe.com/

information on applying for a Verisign certificate and packaging files.

XTRAINFO.TXT

The text file xtrainfo.txt resides in your Director authoring directory. It
contains information about Xtras such as file version names for an Xtra
on both platforms and the URL for the packages. The information
contained in xtrainfo.txt is saved with each movie you create and used by
projectors and Shockwave.

You must create an entry for TreeView Xtra in your xtrainfo.txt file that
specifies the URL on your server for the package files. The last part of
the path will always be "TreeView". That specifies the filename of the
packages within the directory, without the file extension. Do not include
a file extension at the end of the path.

[#namePPC:"TreeView", #nameW32:"TreeView.x32",
#package:"http://www.domain.com/folder/TreeView"]

Make sure that the line above does not contain any return character after
you paste it into your xtrainfo.txt file. Open your text editor wide and
make sure the line does not wrap. If the opening and closing brackets are
not on the same line, Director will not be able to create a valid list from
the entry and the "Download if needed" button will be dimmed for
TreeView Xtra in Director.

If you edit xtrainfo.txt while Director is open you should quit and restart
Director to read in the changed information in xtrainfo.

EDITING THE MOVIE'S XTRAS LIST

Open the Director movie that you want to save as Shockwave. Choose
Modify -> Movie -> Xtras and add TreeView. Select TreeView from the
list and check the "Download if needed" option. Director will initiate an
internet connection and look for the packages at the URL you specified
in xtrainfo.txt.

Online Help

80

If Director finds the packages, it will transfer information about the
package contents for both platforms such as file names and version
numbers and embed the information into your Director movie. An
informational dialog box will appear that tells you that the packages for
both platforms are "downloading". The packages themselves are not
downloading, just information about them that the Shockwave movie will
need later to compare the version of the Xtra the user possibly already
has to the version currently on the server in order to determine if
autodownloading is necessary. The Director movie needs information
about both platforms because it may find itself running on either platform
once it is on the web.

Once "downloading" of the packages has finished, save the movie, then
publish as Shockwave. The finished Shockwave movie can reside at any
URL. It does not have to be in the same directory or even on the same
server as the packaged Xtras.

If a connection cannot be opened, or the packages cannot be found at the
specified location, Director will uncheck the "Download as needed"
option automatically. You must have a successful connection for the box
to remain checked. A Shockwave made out of a Director movie with the
"Download as needed" button unchecked will not autodownload
TreeView Xtra.

Online Help

81

TREEVIEW XTRA HELP: LIMITATIONS

Icon bitmaps: When running in Director 11 it is recommended to use 16 or 32 bit
depth bitmaps for all icon operations in TreeView. Some 8 bit bitmaps might fail to
display correctly on Windows Vista.

Unicode strings: When running in Director 11 TreeView will attempt to convert
and render the supplied UTF8 string data. However, not all glyphs are available and
some double byte languages might fail to load.

International fonts: TreeView does not support double-byte fonts. One user has
reported mapping errors with some single-byte Hebrew fonts.

Callbacks: If both SingleClick and DoubleClick are enabled, the first click of a
user's double-click action triggers the SingleClick callback.

Moving treeview sprite offstage: If you move a treeview sprite outside the stage
boundaries, its old rect will still receive treeview events unless you also set its
sprite's visibility to FALSE

sprite(treesprite).loc = point(-1000,-1000)

sprite(treesprite).visible = FALSE

Altering the size of the tree: If you alter the size of the tree content using Lingo, for
instance with setExpandedXTV, or by changing the size of node icons, you must
then use resetScrollbarsXTV to re-calibrate the scrollbars.

Scrolling to a particular node: There is no built-in command to scroll the tree down
to a particular node. Although it is possible to do this using getNodeLocationXTV
and setContentOffsetXTV, the scrollbars were not designed for this and will
continue to consider the top of the tree as the beginning of the offset. If you use
Lingo to scroll the tree to a particular node, you must also create your own
scrollbars using sprites.

Online Help

82

Scaling: TreeView does not completely support scaling. When shown on a
magnified stage, the bounding box of a TreeView sprite scales, but the contents do
not.

Callback crash: There are some Lingo operations that cannot be performed inside
TreeView callback handlers because they cause a crash. This is a limitation of
sprite Xtras in general, not TreeView Xtra in particular.

Number of nodes: TreeView can create and manage up to a million nodes per tree.
That is the internal logical limit. However, available memory, CPU speed and
graphic card performance will determine how large a tree your application can
actually build and manage with acceptable performance. TreeView was tested at up
to 10,000 nodes per tree.

The memory requirement per unnamed node is between 200 and 600 bytes
depending on the total number of nodes in the tree. That does not include any
additional storage taken up by the node name or custom user strings set for the
node with setUserStringXTV.

Tree properties: All of the properties of a TreeView tree are stored with its sprite. If
you move to a frame that does not contain the TreeView sprite, the properties will
be reset when you return to the frame. If you want to maintain TreeView sprite
properties between frames where the sprite should not appear, move it offstage
(locV = -1000) but keep it in the sprite channel.

Online Help

83

TREEVIEW XTRA HELP: HOW TO
ORDER & REGISTER

The unregistered version of TreeView
Xtra is fully-functional and may be used
for evaluation, nonprofit and
educational purposes only: commercial
distribution is strictly prohibited. A
registered version of the Xtra can be
used in commercial products, and may
be purchased online at
xtras.tabuleiro.com, using a secure
server. At our web site you can also
consult our purchase policy, purchase
instructions, payment, delivery and
security methods.

If you decide to buy the Xtra you don't
need to download a new copy of the
software. After your order is processed
you will receive an e-mail with a serial
number to register the software you've
already installed on your machine.

To register the Xtra you should use the
setMagicXTV() sprite function, before
any other TreeView Xtra function is
used on a TreeView sprite . More
information about specific syntax can be
found at the Methods Documentation
page. Please keep your serial number
archived for future reference.

Online Help

84

http://xtras.tabuleiro.com

TREEVIEW XTRA HELP:
LICENSING & AVAILABILITY

TreeView Xtra is a commercial product.
Current price and updated information
can be found at xtras.tabuleiro.com. If
your product provides printed
documentation and package we ask you
to kindly include the following
copyright information:

TreeView Xtra(tm) (c) Tabuleiro Prod.
Ltda 2008

All Rights Reserved

No royalty-fees are required for a
distribution of the Xtra with your
product.

Online Help

85

http://xtras.tabuleiro.com

TREEVIEW XTRA HELP:
TECHNICAL SUPPORT

Please use the Your Account section
available at our web site
xtras.tabuleiro.com to submit your
questions. The site also contains
Technotes and other resources that can
help you identify and solve the most
common problems quickly.

Online Help

86

http://xtras.tabuleiro.com

	Online Help
	Installation
	Installation
	Installation
	Installation
	Installation
	Installation
	Installation
	Installation
	What TreeView Xtra Does
	Getting Started
	Methods at a Glance
	Methods Documentation
	Callback Handlers
	Event Handling
	Error Code List
	Color
	JavaScript
	Shockwave
	Limitations
	How to Order & Register
	Licensing & Availability
	Technical Support

